Actual source code: butterfly.c
slepc-3.20.2 2024-03-15
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: This example implements one of the problems found at
12: NLEVP: A Collection of Nonlinear Eigenvalue Problems,
13: The University of Manchester.
14: The details of the collection can be found at:
15: [1] T. Betcke et al., "NLEVP: A Collection of Nonlinear Eigenvalue
16: Problems", ACM Trans. Math. Software 39(2), Article 7, 2013.
18: The butterfly problem is a quartic PEP with T-even structure.
19: */
21: static char help[] = "Quartic polynomial eigenproblem with T-even structure.\n\n"
22: "The command line options are:\n"
23: " -m <m>, grid size, the dimension of the matrices is n=m*m.\n"
24: " -c <array>, problem parameters, must be 10 comma-separated real values.\n\n";
26: #include <slepcpep.h>
28: #define NMAT 5
30: int main(int argc,char **argv)
31: {
32: Mat A[NMAT]; /* problem matrices */
33: PEP pep; /* polynomial eigenproblem solver context */
34: PetscInt n,m=8,k,II,Istart,Iend,i,j;
35: PetscReal c[10] = { 0.6, 1.3, 1.3, 0.1, 0.1, 1.2, 1.0, 1.0, 1.2, 1.0 };
36: PetscBool flg;
37: PetscBool terse;
39: PetscFunctionBeginUser;
40: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
42: PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL));
43: n = m*m;
44: k = 10;
45: PetscCall(PetscOptionsGetRealArray(NULL,NULL,"-c",c,&k,&flg));
46: PetscCheck(!flg || k==10,PETSC_COMM_WORLD,PETSC_ERR_USER,"The number of parameters -c should be 10, you provided %" PetscInt_FMT,k);
47: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nButterfly problem, n=%" PetscInt_FMT " (m=%" PetscInt_FMT ")\n\n",n,m));
49: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
50: Compute the polynomial matrices
51: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
53: /* initialize matrices */
54: for (i=0;i<NMAT;i++) {
55: PetscCall(MatCreate(PETSC_COMM_WORLD,&A[i]));
56: PetscCall(MatSetSizes(A[i],PETSC_DECIDE,PETSC_DECIDE,n,n));
57: PetscCall(MatSetFromOptions(A[i]));
58: PetscCall(MatSetUp(A[i]));
59: }
60: PetscCall(MatGetOwnershipRange(A[0],&Istart,&Iend));
62: /* A0 */
63: for (II=Istart;II<Iend;II++) {
64: i = II/m; j = II-i*m;
65: PetscCall(MatSetValue(A[0],II,II,4.0*c[0]/6.0+4.0*c[1]/6.0,INSERT_VALUES));
66: if (j>0) PetscCall(MatSetValue(A[0],II,II-1,c[0]/6.0,INSERT_VALUES));
67: if (j<m-1) PetscCall(MatSetValue(A[0],II,II+1,c[0]/6.0,INSERT_VALUES));
68: if (i>0) PetscCall(MatSetValue(A[0],II,II-m,c[1]/6.0,INSERT_VALUES));
69: if (i<m-1) PetscCall(MatSetValue(A[0],II,II+m,c[1]/6.0,INSERT_VALUES));
70: }
72: /* A1 */
73: for (II=Istart;II<Iend;II++) {
74: i = II/m; j = II-i*m;
75: if (j>0) PetscCall(MatSetValue(A[1],II,II-1,c[2],INSERT_VALUES));
76: if (j<m-1) PetscCall(MatSetValue(A[1],II,II+1,-c[2],INSERT_VALUES));
77: if (i>0) PetscCall(MatSetValue(A[1],II,II-m,c[3],INSERT_VALUES));
78: if (i<m-1) PetscCall(MatSetValue(A[1],II,II+m,-c[3],INSERT_VALUES));
79: }
81: /* A2 */
82: for (II=Istart;II<Iend;II++) {
83: i = II/m; j = II-i*m;
84: PetscCall(MatSetValue(A[2],II,II,-2.0*c[4]-2.0*c[5],INSERT_VALUES));
85: if (j>0) PetscCall(MatSetValue(A[2],II,II-1,c[4],INSERT_VALUES));
86: if (j<m-1) PetscCall(MatSetValue(A[2],II,II+1,c[4],INSERT_VALUES));
87: if (i>0) PetscCall(MatSetValue(A[2],II,II-m,c[5],INSERT_VALUES));
88: if (i<m-1) PetscCall(MatSetValue(A[2],II,II+m,c[5],INSERT_VALUES));
89: }
91: /* A3 */
92: for (II=Istart;II<Iend;II++) {
93: i = II/m; j = II-i*m;
94: if (j>0) PetscCall(MatSetValue(A[3],II,II-1,c[6],INSERT_VALUES));
95: if (j<m-1) PetscCall(MatSetValue(A[3],II,II+1,-c[6],INSERT_VALUES));
96: if (i>0) PetscCall(MatSetValue(A[3],II,II-m,c[7],INSERT_VALUES));
97: if (i<m-1) PetscCall(MatSetValue(A[3],II,II+m,-c[7],INSERT_VALUES));
98: }
100: /* A4 */
101: for (II=Istart;II<Iend;II++) {
102: i = II/m; j = II-i*m;
103: PetscCall(MatSetValue(A[4],II,II,2.0*c[8]+2.0*c[9],INSERT_VALUES));
104: if (j>0) PetscCall(MatSetValue(A[4],II,II-1,-c[8],INSERT_VALUES));
105: if (j<m-1) PetscCall(MatSetValue(A[4],II,II+1,-c[8],INSERT_VALUES));
106: if (i>0) PetscCall(MatSetValue(A[4],II,II-m,-c[9],INSERT_VALUES));
107: if (i<m-1) PetscCall(MatSetValue(A[4],II,II+m,-c[9],INSERT_VALUES));
108: }
110: /* assemble matrices */
111: for (i=0;i<NMAT;i++) PetscCall(MatAssemblyBegin(A[i],MAT_FINAL_ASSEMBLY));
112: for (i=0;i<NMAT;i++) PetscCall(MatAssemblyEnd(A[i],MAT_FINAL_ASSEMBLY));
114: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
115: Create the eigensolver and solve the problem
116: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
118: PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
119: PetscCall(PEPSetOperators(pep,NMAT,A));
120: PetscCall(PEPSetFromOptions(pep));
121: PetscCall(PEPSolve(pep));
123: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
124: Display solution and clean up
125: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
127: /* show detailed info unless -terse option is given by user */
128: PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
129: if (terse) PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
130: else {
131: PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
132: PetscCall(PEPConvergedReasonView(pep,PETSC_VIEWER_STDOUT_WORLD));
133: PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD));
134: PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
135: }
136: PetscCall(PEPDestroy(&pep));
137: for (i=0;i<NMAT;i++) PetscCall(MatDestroy(&A[i]));
138: PetscCall(SlepcFinalize());
139: return 0;
140: }
142: /*TEST
144: testset:
145: args: -pep_nev 4 -st_type sinvert -pep_target 0.01 -terse
146: output_file: output/butterfly_1.out
147: test:
148: suffix: 1_toar
149: args: -pep_type toar -pep_toar_restart 0.3
150: test:
151: suffix: 1_linear
152: args: -pep_type linear
154: test:
155: suffix: 2
156: args: -pep_type {{toar linear}} -pep_nev 4 -terse
157: requires: double
159: testset:
160: args: -pep_type ciss -rg_type ellipse -rg_ellipse_center 1+.5i -rg_ellipse_radius .15 -terse
161: requires: complex
162: filter: sed -e "s/95386/95385/" | sed -e "s/91010/91009/" | sed -e "s/93092/93091/" | sed -e "s/96723/96724/" | sed -e "s/43015/43016/" | sed -e "s/53513/53514/"
163: output_file: output/butterfly_ciss.out
164: timeoutfactor: 2
165: test:
166: suffix: ciss_hankel
167: args: -pep_ciss_extraction hankel -pep_ciss_integration_points 40
168: requires: !single
169: test:
170: suffix: ciss_ritz
171: args: -pep_ciss_extraction ritz
172: test:
173: suffix: ciss_caa
174: args: -pep_ciss_extraction caa -pep_ciss_moments 4
175: test:
176: suffix: ciss_part
177: nsize: 2
178: args: -pep_ciss_partitions 2
179: test:
180: suffix: ciss_refine
181: args: -pep_ciss_refine_inner 1 -pep_ciss_refine_blocksize 1
183: testset:
184: args: -pep_type ciss -rg_type ellipse -rg_ellipse_center .5+.5i -rg_ellipse_radius .25 -pep_ciss_moments 4 -pep_ciss_blocksize 5 -pep_ciss_refine_blocksize 2 -terse
185: requires: complex double
186: filter: sed -e "s/46483/46484/" | sed -e "s/54946/54945/" | sed -e "s/48456/48457/" | sed -e "s/74117/74116/" | sed -e "s/37240/37241/"
187: output_file: output/butterfly_4.out
188: test:
189: suffix: 4
190: test:
191: suffix: 4_hankel
192: args: -pep_ciss_extraction hankel
194: TEST*/