Actual source code: test2.c
slepc-3.20.2 2024-03-15
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: Example based on spring problem in NLEVP collection [1]. See the parameters
12: meaning at Example 2 in [2].
14: [1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, and F. Tisseur,
15: NLEVP: A Collection of Nonlinear Eigenvalue Problems, MIMS EPrint
16: 2010.98, November 2010.
17: [2] F. Tisseur, Backward error and condition of polynomial eigenvalue
18: problems, Linear Algebra and its Applications, 309 (2000), pp. 339--361,
19: April 2000.
20: */
22: static char help[] = "Test the solution of a PEP from a finite element model of "
23: "damped mass-spring system (problem from NLEVP collection).\n\n"
24: "The command line options are:\n"
25: " -n <n> ... number of grid subdivisions.\n"
26: " -mu <value> ... mass (default 1).\n"
27: " -tau <value> ... damping constant of the dampers (default 10).\n"
28: " -kappa <value> ... damping constant of the springs (default 5).\n"
29: " -initv ... set an initial vector.\n\n";
31: #include <slepcpep.h>
33: /*
34: Check if computed eigenvectors have unit norm
35: */
36: PetscErrorCode CheckNormalizedVectors(PEP pep)
37: {
38: PetscInt i,nconv;
39: Mat A;
40: Vec xr,xi;
41: PetscReal error=0.0,normr;
42: #if !defined(PETSC_USE_COMPLEX)
43: PetscReal normi;
44: #endif
46: PetscFunctionBeginUser;
47: PetscCall(PEPGetConverged(pep,&nconv));
48: if (nconv>0) {
49: PetscCall(PEPGetOperators(pep,0,&A));
50: PetscCall(MatCreateVecs(A,&xr,&xi));
51: for (i=0;i<nconv;i++) {
52: PetscCall(PEPGetEigenpair(pep,i,NULL,NULL,xr,xi));
53: #if defined(PETSC_USE_COMPLEX)
54: PetscCall(VecNorm(xr,NORM_2,&normr));
55: error = PetscMax(error,PetscAbsReal(normr-PetscRealConstant(1.0)));
56: #else
57: PetscCall(VecNormBegin(xr,NORM_2,&normr));
58: PetscCall(VecNormBegin(xi,NORM_2,&normi));
59: PetscCall(VecNormEnd(xr,NORM_2,&normr));
60: PetscCall(VecNormEnd(xi,NORM_2,&normi));
61: error = PetscMax(error,PetscAbsReal(SlepcAbsEigenvalue(normr,normi)-PetscRealConstant(1.0)));
62: #endif
63: }
64: PetscCall(VecDestroy(&xr));
65: PetscCall(VecDestroy(&xi));
66: if (error>100*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"Vectors are not normalized. Error=%g\n",(double)error));
67: }
68: PetscFunctionReturn(PETSC_SUCCESS);
69: }
71: int main(int argc,char **argv)
72: {
73: Mat M,C,K,A[3]; /* problem matrices */
74: PEP pep; /* polynomial eigenproblem solver context */
75: PetscInt n=30,Istart,Iend,i,nev;
76: PetscReal mu=1.0,tau=10.0,kappa=5.0;
77: PetscBool initv=PETSC_FALSE,skipnorm=PETSC_FALSE;
78: Vec IV[2];
80: PetscFunctionBeginUser;
81: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
83: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
84: PetscCall(PetscOptionsGetReal(NULL,NULL,"-mu",&mu,NULL));
85: PetscCall(PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL));
86: PetscCall(PetscOptionsGetReal(NULL,NULL,"-kappa",&kappa,NULL));
87: PetscCall(PetscOptionsGetBool(NULL,NULL,"-initv",&initv,NULL));
88: PetscCall(PetscOptionsGetBool(NULL,NULL,"-skipnorm",&skipnorm,NULL));
90: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
91: Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
92: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
94: /* K is a tridiagonal */
95: PetscCall(MatCreate(PETSC_COMM_WORLD,&K));
96: PetscCall(MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n));
97: PetscCall(MatSetFromOptions(K));
98: PetscCall(MatSetUp(K));
100: PetscCall(MatGetOwnershipRange(K,&Istart,&Iend));
101: for (i=Istart;i<Iend;i++) {
102: if (i>0) PetscCall(MatSetValue(K,i,i-1,-kappa,INSERT_VALUES));
103: PetscCall(MatSetValue(K,i,i,kappa*3.0,INSERT_VALUES));
104: if (i<n-1) PetscCall(MatSetValue(K,i,i+1,-kappa,INSERT_VALUES));
105: }
107: PetscCall(MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY));
108: PetscCall(MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY));
110: /* C is a tridiagonal */
111: PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
112: PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n));
113: PetscCall(MatSetFromOptions(C));
114: PetscCall(MatSetUp(C));
116: PetscCall(MatGetOwnershipRange(C,&Istart,&Iend));
117: for (i=Istart;i<Iend;i++) {
118: if (i>0) PetscCall(MatSetValue(C,i,i-1,-tau,INSERT_VALUES));
119: PetscCall(MatSetValue(C,i,i,tau*3.0,INSERT_VALUES));
120: if (i<n-1) PetscCall(MatSetValue(C,i,i+1,-tau,INSERT_VALUES));
121: }
123: PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
124: PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
126: /* M is a diagonal matrix */
127: PetscCall(MatCreate(PETSC_COMM_WORLD,&M));
128: PetscCall(MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n));
129: PetscCall(MatSetFromOptions(M));
130: PetscCall(MatSetUp(M));
131: PetscCall(MatGetOwnershipRange(M,&Istart,&Iend));
132: for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(M,i,i,mu,INSERT_VALUES));
133: PetscCall(MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY));
134: PetscCall(MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY));
136: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
137: Create the eigensolver and set various options
138: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
140: PetscCall(PEPCreate(PETSC_COMM_WORLD,&pep));
141: A[0] = K; A[1] = C; A[2] = M;
142: PetscCall(PEPSetOperators(pep,3,A));
143: PetscCall(PEPSetProblemType(pep,PEP_GENERAL));
144: PetscCall(PEPSetTolerances(pep,PETSC_SMALL,PETSC_DEFAULT));
145: if (initv) { /* initial vector */
146: PetscCall(MatCreateVecs(K,&IV[0],NULL));
147: PetscCall(VecSetValue(IV[0],0,-1.0,INSERT_VALUES));
148: PetscCall(VecSetValue(IV[0],1,0.5,INSERT_VALUES));
149: PetscCall(VecAssemblyBegin(IV[0]));
150: PetscCall(VecAssemblyEnd(IV[0]));
151: PetscCall(MatCreateVecs(K,&IV[1],NULL));
152: PetscCall(VecSetValue(IV[1],0,4.0,INSERT_VALUES));
153: PetscCall(VecSetValue(IV[1],2,1.5,INSERT_VALUES));
154: PetscCall(VecAssemblyBegin(IV[1]));
155: PetscCall(VecAssemblyEnd(IV[1]));
156: PetscCall(PEPSetInitialSpace(pep,2,IV));
157: PetscCall(VecDestroy(&IV[0]));
158: PetscCall(VecDestroy(&IV[1]));
159: }
160: PetscCall(PEPSetFromOptions(pep));
162: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
163: Solve the eigensystem
164: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
166: PetscCall(PEPSolve(pep));
167: PetscCall(PEPGetDimensions(pep,&nev,NULL,NULL));
168: PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
170: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
171: Display solution and clean up
172: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
174: PetscCall(PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL));
175: if (!skipnorm) PetscCall(CheckNormalizedVectors(pep));
176: PetscCall(PEPDestroy(&pep));
177: PetscCall(MatDestroy(&M));
178: PetscCall(MatDestroy(&C));
179: PetscCall(MatDestroy(&K));
180: PetscCall(SlepcFinalize());
181: return 0;
182: }
184: /*TEST
186: testset:
187: args: -pep_nev 4 -initv
188: requires: !single
189: output_file: output/test2_1.out
190: test:
191: suffix: 1
192: args: -pep_type {{toar linear}}
193: test:
194: suffix: 1_toar_mgs
195: args: -pep_type toar -bv_orthog_type mgs
196: test:
197: suffix: 1_qarnoldi
198: args: -pep_type qarnoldi -bv_orthog_refine never
199: test:
200: suffix: 1_linear_gd
201: args: -pep_type linear -pep_linear_eps_type gd -pep_linear_explicitmatrix
203: testset:
204: args: -pep_target -0.43 -pep_nev 4 -pep_ncv 20 -st_type sinvert
205: output_file: output/test2_2.out
206: test:
207: suffix: 2
208: args: -pep_type {{toar linear}}
209: test:
210: suffix: 2_toar_scaleboth
211: args: -pep_type toar -pep_scale both
212: test:
213: suffix: 2_toar_transform
214: args: -pep_type toar -st_transform
215: test:
216: suffix: 2_qarnoldi
217: args: -pep_type qarnoldi -bv_orthog_refine always
218: test:
219: suffix: 2_linear_explicit
220: args: -pep_type linear -pep_linear_explicitmatrix -pep_linear_linearization 0,1
221: test:
222: suffix: 2_linear_explicit_her
223: args: -pep_type linear -pep_linear_explicitmatrix -pep_hermitian -pep_linear_linearization 0,1
224: test:
225: suffix: 2_stoar
226: args: -pep_type stoar -pep_hermitian
227: test:
228: suffix: 2_jd
229: args: -pep_type jd -st_type precond -pep_max_it 200 -pep_ncv 24
230: requires: !single
232: test:
233: suffix: 3
234: args: -pep_nev 12 -pep_extract {{none norm residual structured}} -pep_monitor_cancel
235: requires: !single
237: testset:
238: args: -st_type sinvert -pep_target -0.43 -pep_nev 4
239: output_file: output/test2_2.out
240: test:
241: suffix: 4_schur
242: args: -pep_refine simple -pep_refine_scheme schur
243: test:
244: suffix: 4_mbe
245: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
246: test:
247: suffix: 4_explicit
248: args: -pep_refine simple -pep_refine_scheme explicit
249: test:
250: suffix: 4_multiple_schur
251: args: -pep_refine multiple -pep_refine_scheme schur
252: requires: !single
253: test:
254: suffix: 4_multiple_mbe
255: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu -pep_refine_pc_factor_shift_type nonzero
256: test:
257: suffix: 4_multiple_explicit
258: args: -pep_refine multiple -pep_refine_scheme explicit
259: requires: !single
261: test:
262: suffix: 5
263: nsize: 2
264: args: -pep_type linear -pep_linear_explicitmatrix -pep_general -pep_target -0.43 -pep_nev 4 -pep_ncv 20 -st_type sinvert -pep_linear_st_ksp_type bcgs -pep_linear_st_pc_type bjacobi
265: output_file: output/test2_2.out
267: test:
268: suffix: 6
269: args: -pep_type linear -pep_nev 12 -pep_extract {{none norm residual}}
270: requires: !single
271: output_file: output/test2_3.out
273: test:
274: suffix: 7
275: args: -pep_nev 12 -pep_extract {{none norm residual structured}} -pep_refine multiple
276: requires: !single
277: output_file: output/test2_3.out
279: testset:
280: args: -st_type sinvert -pep_target -0.43 -pep_nev 4 -st_transform
281: output_file: output/test2_2.out
282: test:
283: suffix: 8_schur
284: args: -pep_refine simple -pep_refine_scheme schur
285: test:
286: suffix: 8_mbe
287: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
288: test:
289: suffix: 8_explicit
290: args: -pep_refine simple -pep_refine_scheme explicit
291: test:
292: suffix: 8_multiple_schur
293: args: -pep_refine multiple -pep_refine_scheme schur
294: test:
295: suffix: 8_multiple_mbe
296: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
297: test:
298: suffix: 8_multiple_explicit
299: args: -pep_refine multiple -pep_refine_scheme explicit
301: testset:
302: nsize: 2
303: args: -st_type sinvert -pep_target -0.49 -pep_nev 4 -pep_refine_partitions 2 -st_ksp_type bcgs -st_pc_type bjacobi -pep_scale diagonal -pep_scale_its 4
304: output_file: output/test2_2.out
305: test:
306: suffix: 9_mbe
307: args: -pep_refine simple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
308: test:
309: suffix: 9_explicit
310: args: -pep_refine simple -pep_refine_scheme explicit
311: test:
312: suffix: 9_multiple_mbe
313: args: -pep_refine multiple -pep_refine_scheme mbe -pep_refine_ksp_type preonly -pep_refine_pc_type lu
314: requires: !single
315: test:
316: suffix: 9_multiple_explicit
317: args: -pep_refine multiple -pep_refine_scheme explicit
318: requires: !single
320: test:
321: suffix: 10
322: nsize: 4
323: args: -st_type sinvert -pep_target -0.43 -pep_nev 4 -pep_refine simple -pep_refine_scheme explicit -pep_refine_partitions 2 -st_ksp_type bcgs -st_pc_type bjacobi -pep_scale diagonal -pep_scale_its 4
324: output_file: output/test2_2.out
326: testset:
327: args: -pep_nev 4 -initv -mat_type aijcusparse
328: output_file: output/test2_1.out
329: requires: cuda !single
330: test:
331: suffix: 11_cuda
332: args: -pep_type {{toar linear}}
333: test:
334: suffix: 11_cuda_qarnoldi
335: args: -pep_type qarnoldi -bv_orthog_refine never
336: test:
337: suffix: 11_cuda_linear_gd
338: args: -pep_type linear -pep_linear_eps_type gd -pep_linear_explicitmatrix
340: test:
341: suffix: 12
342: nsize: 2
343: args: -pep_type jd -ds_parallel synchronized -pep_target -0.43 -pep_nev 4 -pep_ncv 20
344: requires: !single
346: test:
347: suffix: 13
348: args: -pep_nev 12 -pep_view_values draw -pep_monitor draw::draw_lg
349: requires: x !single
350: output_file: output/test2_3.out
352: test:
353: suffix: 14
354: requires: complex double
355: args: -pep_type ciss -rg_type ellipse -rg_ellipse_center -48.5 -rg_ellipse_radius 1.5 -pep_ciss_delta 1e-10
357: TEST*/